Following are the implementations of simple Breadth First Traversal from a given source.
The implementation uses adjacency list representation of graphs. STL‘s list container is used to store lists of adjacent nodes and queue of nodes needed for BFS traversal.
filter_none
edit
play_arrow
brightness_4
// Java program to print BFS traversal from a given source vertex.
// BFS(int s) traverses vertices reachable from s.
import java.io.*;
import java.util.*;
  
// This class represents a directed graph using adjacency list
// representation
class Graph
{
    private int V;   // No. of vertices
    private LinkedList<Integer> adj[]; //Adjacency Lists
  
    // Constructor
    Graph(int v)
    {
        V = v;
        adj = new LinkedList[v];
        for (int i=0; i<v; ++i)
            adj[i] = new LinkedList();
    }
  
    // Function to add an edge into the graph
    void addEdge(int v,int w)
    {
        adj[v].add(w);
    }
  
    // prints BFS traversal from a given source s
    void BFS(int s)
    {
        // Mark all the vertices as not visited(By default
        // set as false)
        boolean visited[] = new boolean[V];
  
        // Create a queue for BFS
        LinkedList<Integer> queue = new LinkedList<Integer>();
  
        // Mark the current node as visited and enqueue it
        visited[s]=true;
        queue.add(s);
  
        while (queue.size() != 0)
        {
            // Dequeue a vertex from queue and print it
            s = queue.poll();
            System.out.print(s+" ");
  
            // Get all adjacent vertices of the dequeued vertex s
            // If a adjacent has not been visited, then mark it
            // visited and enqueue it
            Iterator<Integer> i = adj[s].listIterator();
            while (i.hasNext())
            {
                int n = i.next();
                if (!visited[n])
                {
                    visited[n] = true;
                    queue.add(n);
                }
            }
        }
    }
  
    // Driver method to
    public static void main(String args[])
    {
        Graph g = new Graph(4);
  
        g.addEdge(0, 1);
        g.addEdge(0, 2);
        g.addEdge(1, 2);
        g.addEdge(2, 0);
        g.addEdge(2, 3);
        g.addEdge(3, 3);
  
        System.out.println("Following is Breadth First Traversal "+
                           "(starting from vertex 2)");
  
        g.BFS(2);
    }
}
// This code is contributed by Aakash Hasija

Output:
Following is Breadth First Traversal (starting from vertex 2)
2 0 3 1
Illustration :
bfs1bfs2
bfs3bfs4
bfs6bfs7
bfs8bfs9
bfs10bfs11
Note that the above code traverses only the vertices reachable from a given source vertex. All the vertices may not be reachable from a given vertex (example Disconnected graph). To print all the vertices, we can modify the BFS function to do traversal starting from all nodes one by one (Like the DFS modified version) .
Time Complexity: O(V+E) where V is number of vertices in the graph and E is number of edges in the graph.

Comments

Popular posts from this blog

FACTS ABOUT CLOUD COMPUTING

Save a Workbook in another File Format

Healthcare Industry in India